Mechanical Constraints on Flight at High Elevation Decrease Maneuvering Performance of Hummingbirds
نویسندگان
چکیده
High-elevation habitats offer ecological advantages including reduced competition, predation, and parasitism [1]. However, flying organisms at high elevation also face physiological challenges due to lower air density and oxygen availability [2]. These constraints are expected to affect the flight maneuvers that are required to compete with rivals, capture prey, and evade threats [3-5]. To test how individual maneuvering performance is affected by elevation, we measured the free-flight maneuvers of male Anna's hummingbirds in a large chamber translocated to a high-elevation site and then measured their performance at low elevation. We used a multi-camera tracking system to identify thousands of maneuvers based on body position and orientation [6]. At high elevation, the birds' translational velocities, accelerations, and rotational velocities were reduced, and they used less demanding turns. To determine how mechanical and metabolic constraints independently affect performance, we performed a second experiment to evaluate flight maneuvers in an airtight chamber infused with either normoxic heliox, to lower air density, or nitrogen, to lower oxygen availability. The hypodense treatment caused the birds to reduce their accelerations and rotational velocities, whereas the hypoxic treatment had no significant effect on maneuvering performance. Collectively, these experiments reveal how aerial maneuvering performance changes with elevation, demonstrating that as birds move up in elevation, air density constrains their maneuverability prior to any influence of oxygen availability. Our results support the hypothesis that changes in competitive ability at high elevations are the result of mechanical limits to flight performance [7].
منابع مشابه
Resolution of a paradox: hummingbird flight at high elevation does not come without a cost.
Flight at high elevation is energetically demanding because of parallel reductions in air density and oxygen availability. The hovering flight of hummingbirds is one of the most energetically expensive forms of animal locomotion, but hummingbirds are nonetheless abundant at high elevations throughout the Americas. Two mechanisms enhance aerodynamic performance in high-elevation hummingbirds: in...
متن کاملLimits to flight energetics of hummingbirds hovering in hypodense and hypoxic gas mixtures.
Hovering hummingbirds offer a model locomotor system for which analyses of both metabolism and flight mechanics are experimentally tractable. Because hummingbirds exhibit the highest mass-specific metabolic rates among vertebrates, maximum performance of hovering flight represents the upper limit of aerobic locomotion in vertebrates. This study evaluates the potential constraints of flight mech...
متن کاملFlight thermogenesis and energy conservation in hovering hummingbirds
As the smallest homeotherms, hummingbirds suffer from low thermal inertia and high heat loss. Flapping flight is energetically expensive, and convective cooling due to wing and air movements could further exacerbate energy drain. Energy conservation during flight is thus profoundly important for hummingbirds. The present study demonstrates that heat produced by flight activity can contribute to...
متن کاملThe physiology and biomechanics of avian flight at high altitude.
Many birds fly at high altitude, either during long-distance flights or by virtue of residence in high-elevation habitats. Among the many environmental features that vary systematically with altitude, five have significant consequences for avian flight performance: ambient wind speeds, air temperature, humidity, oxygen availability, and air density. During migratory flights, birds select flight...
متن کاملFlight performance and competitive displacement of hummingbirds across elevational gradients.
Hummingbirds, with their impressive flight ability and competitive aerial contests, make ideal candidates for applying a mechanistic approach to studying community structure. Because flight costs are influenced by abiotic factors that change systematically with altitude, elevational gradients provide natural experiments for hummingbird flight ecology. Prior attempts relied on wing disc loading ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016